Improving the noise-robustness of mel-frequency cepstral coefficients for speech processing
نویسندگان
چکیده
In this paper we study the noise-robustness of mel-frequency cepstral coefficients (MFCCs) and explore ways to improve their performance in noisy conditions. Improvements based on a more accurate model of the early auditory system are suggested to make the MFCC features more robust to noise while preserving their class discrimination ability. Speech versus non-speech classification and speech recognition are chosen to evaluate the performance gains afforded by the modifications.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملImproving the filter bank of a classic speech feature extraction algorithm
The most popular speech feature extractor used in automatic speech recognition (ASR) systems today is the mel frequency cepstral coefficient (mfcc) algorithm. Introduced in 1980, the filter bank-based algorithm eventually replaced linear prediction cepstral coefficients (lpcc) as the premier front end, primarily because of mfcc’s superior robustness to additive noise. However, mfcc does not app...
متن کاملNoise-Robust Speech Features Based on Cepstral Time Coefficients
In this paper, we investigate the noise-robustness of features based on the cepstral time coefficients (CTC). By cepstral time coefficients, we mean the coefficients obtained from applying the discrete cosine transform to the commonly used mel-frequency cepstral coefficients (MFCC). Furthermore, we apply temporal filters used for computing delta and acceleration dynamic features to the CTC, res...
متن کاملMFCC computation from magnitude spectrum of higher lag autocorrelation coefficients for robust speech recognition
Processing of the speech signal in the autocorrelation domain in the context of robust feature extraction is based on the following two properties: 1) pole preserving property (the poles of a given (original) signal are preserved in its autocorrelation function), and 2) noise separation property (the autocorrelation function of a noise signal is confined to lower lags, while the speech signal c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006